Атом

admin Рубрика: Оптимизм
Комментарии к записи Атом отключены
.

В первой части этой книги, в очерке «Начальные условия» уже шла речь о ноозонах, о тех областях, где законы одного ряда явлений переходят в иные законы, специфические для другого ряда, несводимые к первым. Теперь мы можем проиллюстрировать подобные переходы и вместе с тем показать, что именно здесь — наиболее пластичные зоны, где целесообразная деятельность человека создает начальные условия, упорядочивает мир, создает исходную негэнтропию, предопределяющую в той или иной мере ход объективных процессов.

В современной науке и технике ноозонами становятся такие звенья иерархии дискретных частей вещества, которые раньше не могли испытать упорядочивающее воздействие человека. Сейчас речь пойдет об атомном ядре и ядерных реакциях. Здесь создается зона перехода от законов и соотношений, определяющих существование стабильных ядер, к законам деления и синтеза ядер, их превращения в иные ядра. Для реакций ядерного деления существенно наличие некоторой критической массы, при которой деление ядер приобретает характер цепной реакции. Получение делящегося вещества в блоках критической массы — пример создания начальных условий, предопределяющих ход используемого процесса. В случае синтеза ядер начальные условия включают очень высокую температуру. В обоих случаях речь идет о такой перекомпоновке исходных, начальных условий, при которой начинается заранее представимый (и поэтому могущий играть роль цели человеческой деятельности) процесс. Создание блоков делящегося урана или плутония в сущности аналогично созданию концентрированного перепада потенциала воды в верхнем и нижнем бьефах у плотины или перепаду температуры между котлом и конденсатором паровой машины. Только в ядерной энергетике мы сталкиваемся с несравненно большими концентрациями энергии, с несравненно большими перепадами, с пластичной, допускающей целесообразное вмешательство структурой в очень малых пространственно-временных областях. Однако здесь лучше остановиться и вспомнить о читателях, которые ожидают пояснений, чтобы понять, о чем идет речь, о каких ядрах, о каких процессах деления и синтеза. Таких читателей, вероятно, меньшинство: представления о ядерных процессах, освобождающих 2,2 тыс. квтч из каждого грамма делящегося вещества, сейчас широко распространены. Но интересы меньшинства должны учитываться, и краткие пояснения здесь уместны.
Теория относительности связала энергию тела с его массой соотношением Е = mс2. Это соотношение впоследствии позволило объяснить один важный результат ядерной физики. Масса ядра немного меньше, чем сумма масс ядерных частиц — протонов и нейтронов, из которых состоит ядро. Разность (ее назвали «дефектом массы») у одних элементов больше, у других меньше. С точки зрения теории относительности эту разность можно связать с энергией связи частиц в ядре, объяснить разностью энергии ядерных частиц, взятых порознь (т. е. суммарной энергией распавшегося ядра, суммарной энергией еще не соединенных воедино частиц, из которых состоит ядро), и полной энергией ядра. Энергия ядра меньше суммы энергий составляющих его частиц, поэтому и масса его меньше суммы масс частиц. Когда частицы соединяются в ядро, освобождается энергия и соответственно уменьшается масса. В одних ядрах частицы упакованы более компактно, разность между энергией ядра и суммарной энергией частиц, составляющих это ядро, здесь относительно больше и соответственно дефект массы больше. В ядрах других элементов частицы упакованы не так компактно и дефект массы меньше. Разумеется, речь идет не о различии, зависящем от сравнительной величины ядер (они могут состоять из нескольких частиц, из нескольких десятков частиц, вплоть до самых тяжелых элементов, где в ядрах сгруппировано больше двухсот частиц), а о дефекте массы, приходящемся на одну частицу, об удельном дефекте массы.
Предположим, что мы перегруппировали частицы и уложили их в ядре так, что дефект массы возрос. Тогда за счет подобной более компактной, более экономной упаковки часть энергии освободится. Каким переходам от одного элемента к другому соответствует такое освобождение энергии?
Таблица Менделеева начинается водородом, атомное ядро которого состоит из одного протона. Здесь дефект массы, конечно, отсутствует. У следующего элемента, гелия, ядро состоит из двух протонов и двух нейтронов, здесь есть значительный дефект массы, и синтез ядер гелия из ядер водорода (т. е. протонов) и нейтронов освободил бы относительно большое количество энергии. В середине таблицы Менделеева находятся элементы с большим удельным дефектом массы, чем в начале таблицы, у легких элементов, и большим, чем в конце таблицы, у тяжелых элементов. Поэтому, разделив ядро урана (238 ядерных частиц) на два ядра по 115–120 ядерных частиц, мы перешли бы к более экономной упаковке частиц и соответственно большему удельному дефекту массы. Энергия при этом выделилась бы. Такое выделение энергии освободило бы только небольшую часть энергии, соответствующей всей массе вещества. Здесь еще не используется энергия, близкая к массе частиц, умноженной на квадрат скорости света. Но освобождающаяся при таком делении энергия в миллионы раз больше, чем энергия, получаемая из того же количества вещества при перегруппировке атомов в молекулах, например при сгорании топлива. В атомной физике энергия обычно измеряется электронвольтами (эв). Электронвольт — это энергия одного электрона, которую он приобретает, пройдя разность потенциалов в один вольт. При делении одного ядра урана выделяется 200 млн. эв энергии — в несколько миллионов раз больше, чем. приходится на один атом при выделяющих энергию химических реакциях, например при горении топлива. Один грамм урана дает больше тепла, чем три тонны сгорающего угля.
Практическая возможность перегруппировки ядерных частиц в ядра с большим дефектом массы и использования разницы в дефекте массы стала вырисовываться в 30-е воды. В начале 30-х годов были открыты уже упоминавшиеся частицы, не имеющие электрического заряда, — нейтроны. Лишенные заряда, они не испытывают кулоновского отталкивания со стороны ядер и могут легко проникать в ядра и вызывать ядерные реакции. До конца 30-х годов были известны лишь ядерные реакции радиоактивного распада, при которых из ядра вылетают одна или несколько ядерных частиц и элемент переходит в соседнюю или близкую клетку таблицы Менделеева. В 1939 г. выяснилось, что при бомбардировке урана нейтронами ядро урана раскалывается на две почти равные половины — атомные ядра элементов, стоящих в середине таблицы Менделеева. Разница в дефекте массы уже указана — 200 млн. эв, так что на каждую ядерную частицу приходится около миллиона электрон-вольт «экономии». Освобождение этой энергии (соответствующее уменьшению массы ядра урана при его расщеплении) в виде кинетической энергии осколков урановых ядер и в виде излучений сопровождается вылетом из делящихся ядер новых нейтронов, которые попадают в другие ядра, и таким образом при известных условиях возникает цепная реакция, иначе говоря, первый же нейтрон (а они могут возникать в уране спонтанно либо под действием космических лучей) вызовет деление всей массы урана.
Цепная реакция не прекращается, если при делении ядра выделится число нейтронов, в среднем большее единицы, т. е. на каждый затраченный нейтрон выделится больше одного нового нейтрона. Развитию цепной реакции мешает захват нейтронов ядрами, которые при захвате не делятся. Если из каждой группы выделившихся новых нейтронов слишком много нейтронов будет захвачено ядрами без деления этих ядер, цепной реакции не произойдет. Обычный природный уран состоит в основном из двух изотопов: урана-238 с 238 ядерными частицами и урана-235 с 235 частицами (есть еще третий изотоп — уран-233 с 233 частицами; его в природном уране совсем мало). Урана-238 в 140 раз больше, чем урана-235. Ядра этих изотопов по-разному реагируют на попадание медленного (с энергией не больше 2 млн. эв) нейтрона. В уране-238 ядра, захватывая такой нейтрон, превращаются в ядра нового изотопа — урана-239. Таким образом, они не распадаются. Каждый новый нейтроне имеет во много раз больше шансов быть захваченный ядром урана-238, чем вызвать деление и участвовать 9 цепной реакции.
Поэтому в обычном, природном уране цепной реакции не происходит. Другое дело, если выделить уран-235. Ядра этого изотопа делятся при попадании нейтрона в ядро, и в выделенном, чистом уране-235 начинается цепная реакция. Но здесь требуется дополнительное условие. Если кусок урана-235 мал, большинство нейтронов уйдет из этого куска, не вызвав деления ядер: для цепной реакции нужен кусок урана-235 не меньше определенной, критической массы.
Теперь посмотрим, что происходит, когда ядро урана-238 захватывает нейтрон. Оно становится ядром урана-239. Этот неустойчивый изотоп очень быстро распадается и при этом переходит в изотоп нептуния-239 — нового, искусственно полученного элемента таблицы Менделеева, первого из более тяжелых, чем уран, элементов — трансуранов. Далее, нептуний, обладающий периодом полураспада 2,3 дня, превращается в изотоп плутония. Ядра плутония делятся под влиянием нейтронов, подобно ядрам урана-235.
Нейтроны с энергией ниже 2 млн. эв вызывают деление урана-235 и плутония. Они могли бы поддерживать цепную реакцию и в природном уране, если бы удалось уменьшить шансы захвата нейтронов ураном-238. Очень медленные нейтроны обладают такими уменьшенными шансами захвата. Но как добиться, чтобы сравнительно быстрые нейтроны, образующиеся при делении урана-235 (их энергия в среднем около 2 млн. эв), уменьшили свою скорость, чтобы их энергия достигла нескольких электронвольт и ниже до встречи с ядрами урана-238? С такой малой энергией нейтроны избегнут захвата ядрами урана-238, вызовут деление урана-235, и при надлежащих условиях начнется цепная реакция. Если пронизать толщу природного урана другим веществом, замедляющим нейтроны, но мало захватывающим их, то задача может быть решена. В качестве подобного замедлителя может фигурировать водород — его ядра при упругих столкновениях с нейтронами замедляют их. Но ядра водорода слишком часто захватывают нейтроны, образуя ядра тяжелого водорода — дейтерия. Поэтому, применив в качестве замедлителя воду, т. е. вещество, в котором много водорода, мы не получим цепной реакции в природном Стране; вода как замедлитель пригодна, если применяется' обогащенный уран, с большим, чем в природном уране, содержанием урана-235. Дейтерий, т. е. тяжелый водород, в ядре которого кроме протона есть еще нейтрон, меньше захватывает нейтроны, и если взять тяжелую воду (т. е. вещество, где водород заменен дейтерием), то можно пользоваться природным ураном. Можно еще использовать в качестве замедлителя графит; урановые стержни в графитовом блоке были применены уже в первом ядерном реакторе.
Теперь несколько слов о реакторах, в которых распад ядер урана используется для получения тепла и производства электроэнергии. Осколки ядер обладают большой кинетической энергией; они передают эту энергию окружающей среде, и температура последней повышается. Чтобы повышение температуры не разрушило реактора, в «активную зону», т. е. в пространство, где происходит деление урана, вводят кадмиевые стержни, которые сильно поглощают нейтроны. Ввод этих стержней позволяет регулировать реакцию и выделение тепла.
Отвод тепла производится с помощью теплоносителя — воды, жидкого металла или газа с малой химической активностью.
Начало атомной энергетики и начало атомного века — это отнюдь не атомные бомбы. Ведь началом эры тепловых двигателей было не огнестрельное оружие, которое можно рассматривать как цилиндр, из которого поршень под давлением расширяющихся газов вылетает наружу в виде снаряда или пули. Такой однотактный двигатель не был началом теплоэнергетики, хотя именно он заставил Лейбница, Гюйгенса и Папена подумать о промышленном двигателе, превращающем давление газа или пара в механическую работу. Первые реакторы, вырабатывавшие плутоний для атомных бомб, реализовали физическую схему, которая, трансформировавшись, стала основой собственно энергетического применения ядерных реакторов. Трансформация была достаточно глубокой, хотя и не столь коренной и уже совсем не столь длительной, как та, которая отделяла огнестрельное оружие от тепловых двигателей. В реакторах, где изготовлялся плутоний для атомных бомб, происходили два основных ядерных процесса. Первый состоял в делении ядер урана-235. Чтобы этот процесс продолжался и оказывался цепной реакцией, чтобы число нейтронов, выделяющихся при делении и вызывающих деление других ядер урана-235, не уменьшалось, нужно было, как уже говорилось, замедлять нейтроны. Но такое замещение, не позволяя ядрам урана-238 захватывать слишком много нейтронов, все же не полностью устраняло подобный захват. Он и был вторым (ас точки зрения производственной задачи — первым) основным процессом в реакторе. Захват нейтронов ядрами урана-238 превращал последний в конце концов в плутоний.
Предположим, что плутоний, который образуется в реакторе, используется в самом этом реакторе: он заменяет сгоревшее ядерное горючее, он делится, испускает новые нейтроны, и эти нейтроны частично попадают в ядра плутония и поддерживают цепную реакцию, а частично попадают в ядра урана-238 и превращают их в конце концов в новые ядра плутония.
Мы приходим к физической схеме, массовое практическое воплощение которой будет весьма радикальным переворотом в энергетике. Все дело в числе нейтронов, избыточных по отношению к необходимым для поддержания цепной реакции и создающих новое ядерное топливо. Плутоний создавался и раньше, в первых реакторах, где изготовлялись заряды атомных бомб. Он и был основной продукцией этих реакторов. Но плутоний не возвращался в реактор, не служил для пополнения ядерного горючего, не был таким горючим, не участвовал в управляемой реакции, не являлся источником энергии, базой атомной станции. Деление плутония не было управляемой цепной реакцией с постоянной скоростью, оно происходило в виде взрыва. Здесь полная аналогия с огнестрельным оружием (однократный акт выброса поршня) и тепловым поршневым двигателем (поступательно-возвратное движение поршня, поддерживающего повторяющееся расширение пара или газа).
Еще несколько слов об этой аналогии. Атомная бомба из плутония во время взрыва представляет собой чисто энергетический (производящий только энергию, а не атомное горючее) реактор на быстрых нейтронах. Разумеется, такое определение не менее условно, чем определение пушки как теплового двигателя: бомба — однократный реактор. Можно ли превратить его в управляемый реактор с постоянной отдачей энергии для производственного использования? Возможна ли атомная электростанция, в которой, нейтроны не замедляются?
Напомним, что замедление нейтронов было необходимо для поддержания цепной реакции. Без замедления нейтроны, образующиеся в природном уране при делении ядер урана-235, попадали бы в гораздо более многочисленные ядра урана-238 и захватывались этими ядрами без деления и дальнейшего образования нейтронов. Но если атомный реактор содержит только (или в очень большой мере) уран-235, то положение меняется. Теперь быстрые нейтроны уже не попадают в ядра урана-238 — последние отсутствуют или их очень мало в активной зоне реактора. Цепная реакция продолжается. При этом коэффициент воспроизводства нейтронов (вероятное число нейтронов, образующихся при делении, вызванном одним нейтроном) будет значительно большим, чем в случае медленных тепловых нейтронов. Но для управляемой реакции не нужны быстрое размножение нейтронов и соответственно охват делением увеличивающегося в геометрической прогрессии числа атомных ядер. Избыточного числа нейтронов хватит, чтобы возместить различные потери (поглощение нейтронов материалами, из которых сделано оборудование реактора, теплоносителем и т. п.) и, кроме того, чтобы часть нейтронов попала из активной зоны в окружающую уран-235 толщу природного урана и частично превратила преобладающий здесь уран-238 в уран-239, который превратится в нептуний, а затем в плутоний. Этот плутоний заменит находящийся в центральной активной зоне уран-235. Реактор сможет работать без нового, привносимого извне ядерного горючего — делящихся материалов. Более того, можно устроить так, чтобы число новых ядер плутония было больше, чем число разделившихся ядер урана-235 или ядер плутония, т. е. чтобы реактор производил больше ядерного горючего, чем он сам потребляет. Можно, например, сделать так, чтобы каждые два разделившихся ядра плутония вызывали образование новых трех ядер плутония из ядер урана-238. К такой особенности реакторов-размножителей мы вскоре вернемся.
Реактор, о котором идет речь, называется реактором на быстрых нейтронах. Ему, по-видимому, принадлежит будущее. Но только будущее. Сейчас реакторы ка быстрых нейтронах еще не могут успешно конкурировать с реакторами на медленных нейтронах. Применение последних имеет некоторые преимущества. Реактор на быстрых нейтронах обладает очень малыми размерами активной зоны, где происходит деление ядер и выделяется тепло. Отводить это тепло при малых размерах трудно и сложно. Реактор на медленных нейтронах лишен этого недостатка, и здесь отвод тепла легче, проще и соответственно дешевле. Но здесь уменьшается число нейтронов, вызывающих деление, уменьшается число новых нейтронов, и баланс их такой, что нельзя получить из урана-238 больше ядерного горючего, чем его израсходовано. Возможно, однако, и при использовании медленных нейтронов получить возрастание ядерного горючего. Уже давно было известно, что торий — элемент, чаще встречающийся в земной коре, чем уран, захватывая нейтроны, превращается в изотоп урана с ядром, состоящим из 233 частиц. Этот уран-233 является одной из составных частей природного урана, но его содержание еще во много раз меньше, чем содержание урана-235. Следующее обстоятельство сделало очень важным этот изотоп и возможность его получения из тория. Дело в том, что уран-233, подобно плутонию и урану-235, под влиянием нейтронов делится и представляет собой поэтому еще один вид ядерного горючего. Число нейтронов, образующихся при делении урана-233, сравнительно велико, и этих нейтронов хватит, чтобы вызвать возрастание запаса ядерного горючего даже при использовании медленных нейтронов. Можно окружить активную зону, где сгорает уран-235, торием. Нейтроны, попадающие в торий, вызовут образование урана-233.
Такая схема — использование вместо урана более распространенного тория и изготовление в реакторе большего количества ядерного топлива, чем потребляемое им количество, имеет первостепенное значение для проблемы энергетических ресурсов. Но, прежде чем коснуться этой темы, вернемся к уже сделанным в первой главе замечаниям о характере технического прогресса в атомном веке — об изменении не только конструкций и технологических схем, но и идеальных физических циклов, к максимальному воплощению которых стремится развивающаяся техника.
Именно такова эволюция реакторов. Наряду с чисто техническим прогрессом, т. е. все более полным техническим воплощением каждой физической схемы (выбор новой конструктивной формы реактора, нового замедлителя, нового теплоносителя), происходит смена самой идеальной физической схемы. Именно таков переход от реакторов, тратящих возобновляемое извне ядерное горючее, к реакторам-размножителям. Здесь используется новая физическая схема, технический прогресс становится научно-техническим прогрессом, он приносит не только технологическую информацию, но и информацию о закономерностях ядерных реакций, расширяет рамки техники, зависящие от физической схемы, состоит в приближении к идеальному циклу, который сам меняется, сам заменяется другим идеальным циклом.
Подобные изменения идеального цикла — канона, к которому стремится технический прогресс, происходили, как уже говорилось, и в классические времена. Но появление новых линий технического прогресса, связанных с новыми идеальными физическими схемами, было спорадическим. Физические схемы устанавливались на столетие, иногда больше, редко меньше. Это были схемы классической физики. Теперь, в атомном веке, на глазах одного поколения происходит моральное изнашивание не только конструкций, но и идеальных физических схем. Еще далеко не воплотилась в устойчивые формы схема освобождения атомной энергии за счет ядерного горючего, полученного путем разделения изотопов, как реакция захвата нейтронов и последовательного превращения ядер урана-238 стала практически применимой реакцией, затем на эту роль стала претендовать более сложная система реакций, приводящих к воспроизводству ядерного горючего, а в перспективе появилась термоядерная реакция как источник энергии. И каждое новое звено становится отправным пунктом если не экономических сдвигов, то экономических прогнозов, в планирующие учреждения приходят уже не только специалисты по прикладной физике, но и экспериментаторы и теоретики из областей чистой науки, и чем более «чистой», более общей является эта область, тем более коренные (хотя и более неопределенные) сдвиги она обещает.
Мы уже останавливались на этой иерархии все более общих научных концепций и связанных с ними все более радикальных и все менее определенных в настоящее время прогнозов. Реакторы-размножители занимают в этой иерархии среднее место. Мы можем оценить с большой достоверностью качественный эффект превращения этих реакторов в основную компоненту атомной энергетики. Что же касается количественных показателей такого превращения и его количественных результатов, то здесь приходится ограничиться лишь условными датами, указаниями на порядок цифр и очень далекими от достоверности вероятностями тех или иных масштабов[32].
Как уже было сказано, конец 60-х годов — это время, когда стоимость киловатт-часа на атомной станции приблизилась к стоимости киловатт-часа на классических тепловых станциях. Во второй половине 40-х годов раздавались голоса оптимистов, ждавших очень быстрого внедрения атомной энергии в энергетический баланс, и пессимистов, откладывающих такое внедрение на более позднее время; иногда при этом называли двадцатилетний срок. Такой прогноз оправдан действительной эволюцией, причем сейчас он весьма оптимистичен.
Приближение стоимости киловатт-часа на атомных станциях к его стоимости на классических станциях иллюстрируется, в частности, данными по США. Здесь имеются богатые и сравнительно доступные месторождения каменного угля, исчерпания угольных запасов в течение ближайших пятидесяти лет не предвидится, и даже переход к менее доступным, требующим больших затрат месторождениям вряд ли окажет существенное воздействие на стоимость угля до конца нашего столетия. Цены на топливо, по некоторым обоснованным прогнозам, должны стабилизироваться на уровне одного доллара за гигакалорию для угля, нефти и газа[33]. Что же касается атомной энергии, то для нее можно предвидеть существенное снижение как стоимости ядерного горючего, так и расходов на строительство станций и эксплуатационных расходов помимо ядерного горючего.
Во всем мире строительство более мощных атомных станций показало, что для них зависимость снижения стоимости киловатт-часа от укрупнения станций оказывается более резкой, чем для классических тепловых станций. Приведем данные о конкурентоспособности атомных электростанций США в зависимости от их мощности. Станция мощностью 190 Мвт может конкурировать с тепловыми электростанциями, если цена обычного топлива достигает 1,96 долл, за гигакалорию. Для станции в 300 Мвт эта цифра снижается до 1,64 долл. Атомная станция мощностью 800 Мвт будет успешно конкурировать с тепловой, если цена топлива на последней составит 0,8–0,96 долл, за гигакалорию, а станция в 1000 Мвт — при цене 0,52—0,8 долл[34]. Отсюда следует, что атомные станции мощностью 300–400 Мвт могут конкурировать с угольными станциями в районах со средней по стране ценой угля, а станции в 1000 Мвт смогут к 1985 г. конкурировать с угольными во всех районах, даже там, где цена на уголь ниже всего[35].
Эти расчеты, опубликованные в 1966 г., в общем подтвердились. Строительство и, отчасти, эксплуатация мощных станций в конце 60-х и в начале 70-х гг. показали, что с ростом масштабов стоимость установленного киловатта и стоимость киловатт-часа на атомных централях, действительно, снижается быстрее. Сейчас это уже не прогноз, а констатация, опирающаяся на опыт построенных станций.
Сопоставление удельных капитальных вложений, расходов на горючее и ремонтных расходов на атомных (введенных в 1970–1971 гг.) и классических станциях показывает, что все эти расходы на атомных станциях уменьшаются быстрее, чем на тепловых станциях.
Однако простого сопоставления расходов на производство киловатт-часа электроэнергии недостаточно для прогноза. Необходимо учесть дополнительные обстоятельства. Прежде всего — общую проблему истощения классических ресурсов. Это отнюдь не проблема далекого будущего. Речь идет об относительном истощении, т. е. о переходе к средоточиям, требующим при поисках и эксплуатации больших затрат труда. Когда речь идет о мировом хозяйстве в целом, следует учитывать, что нефть и газ с 1963 г. занимают в энергетическом балансе большее место, чем твердое топливо. В 1937 г. твердое топливо составляло 68,8 %, жидкое топливо —18,2, природный газ — 5,8 и гидроэнергия — 7,2 %. С 1937 по 1963 г. потребление энергетических ресурсов возросло в 2,5 раза. При этом доля твердого топлива упала до 44,8 %, гидроэнергии до 6,7, в то время как доля жидкого топлива удвоилась (достигла 32 %), а доля природного газа утроилась (16,5 %)[36].
Существенно, что нефть и газ стали топливом для электростанций. Но для этих видов энергетических ресурсов проблема истощения стоит острее, чем для угля.
Для урана эта проблема также является острой, если исходить из господствующего сейчас использования только части урана — делящегося изотопа, урана-235. В этом случае атомная станция требует в течение 20 лет 5,5 т урана на установленный мегаватт[37].
Имеющиеся рентабельные запасы урана могут обеспечить в течение двадцати лет атомные станции общей мощностью несколько больше 100 тыс. Мгвт. Если к 1980 г. атомные станции достигнут такой мощности, все известные сейчас рентабельные месторождения урана будут исчерпаны к началу XXI в. Уже сейчас проектируется гораздо более высокая мощность атомных станций на 1980 г., а в течение следующих двадцати лет, т. е. к 2000 г., она возрастет еще в 15–20 раз. Поэтому прогнозы такого роста исходят из коренного преобразования атомной энергетики, перехода в 80-е и 90-е годы к реакторам-размножителям как основному типу атомно-энергетических установок. В этом случае наличные запасы урана эквивалентны 4 миллионам миллиардов тонн условного топлива, а запасы тория представляются еще большими[38].
Таким образом, перспективы атомной энергетики иллюстрируют характерную черту атомного века: экономические прогнозы зависят не только от собственно технических тенденций (т. е. от эвентуального инженерного воплощения уже имеющихся физических схем), но и от более общих и радикальных трансформаций, включающих изменения исходных физических схем, целевых физических канонов технического прогресса.
Чтобы оценить эффект таких радикальных преобразований, нужно проводить эвентуальные «треки» технического и экономического прогресса, аналогичные тем трекам частиц, по форме и длине которых определяют тип возникающих частиц. Именно поэтому технические и экономические прогнозы (они и являются подобными «треками») становятся неотъемлемой частью анализа современных ситуаций. Та же парадоксальная ситуация: мы не только определяем будущее, исходя из настоящего, но и определяем настоящее, исходя из предвидимого (предвидимого с достаточно большой неопределенностью) будущего. Все дело в том, что в наш динамический век экономически определить современную тенденцию — значит, помимо прочего, определить ее ускоряющий эффект, ее значение не только для производительности труда, структуры производства и т. д., но и для производной по времени от величин, измеряющих производительность и структуру.
В число фактов, относящихся к настоящему, определяющих экономический смысл того, что происходит сейчас, входит радикальная смена атомно-энергетических прогнозов в конце 60-х годов. От прогноза, сделанного в начале 60-х годов, о киловатт-часе, более дешевом на атомной станции, чем на тепловой, в 1980 г., перешли к прогнозу о такой ситуации в 1970 г.[39] Подобный переход может показаться не слишком существенным: речь идет о неопределенных прогнозах, и различие прогнозов, быть может, находится в пределах их возможных отклонений от действительной динамики стоимости. Но на самом деле переход от одного прогноза к другому как раз и означает сокращение таких отклонений: прогноз на 1970 г. принципиально отличался от прогноза на 1980 г. своей относительной точностью; стоимость киловатт-часа в 1970 г. вычислялась на основе проектных данных, очень близких к реализации.
Указанный переход сделал весьма показательным различие между прогнозами, относящимися к мощности атомных станций в 2000 г., сделанными в начале 1966 г. и в 1966–1967 гг. Подчеркнем: не сами количественные прогнозы, а их различие. Оно-то нас сейчас и интересует, поскольку мы хотим увидеть в прогнозах перелом в реальных тенденциях сегодняшнего дня. Такой перелом наступил, и он действительно может быть назван реальным. Смена прогнозов на 2000 г. обоснована реальным снижением стоимости киловатт-часа на атомных станциях в конце 60-х годов.
Сейчас, когда прогноз реализован, можно видеть, насколько он был точным. Вообще история прогнозов в 60-х годах поучительна. В 1966–1967 гг. здесь произошел перелом. Очень неуверенные и неточные предположения уступили место более смелым. Сейчас можно видеть, насколько точными оказались прогнозы конца 60-х годов. Все дело в том, что именно в это время произошло существенное снижение стоимости киловатт-часа на атомных станциях. Оно позволило вскрыть некоторые закономерности, увидеть причины снижения и определить темпы дальнейших соотношений стоимости энергии на угольных и атомных станциях. Поэтому сейчас, когда некоторые прогнозы (на 1970–1972 гг.) уже реализовались, представляет существенный интерес анализ различий между прогнозами, относящимися к мощности атомных станций в 2000 г., сделанными в начале 1966 г. и позже — в 1967 г.
Мы приведем прогнозы Ф. Фремонта, сделанные в 1966 и 1967 гг.[40] (прогнозы 1966 г. в знаменателе, прогнозы 1967 г. в числителе).
Дополним эти очень красноречивые цифры одним из прогнозов на 2000 г. По мнению В. Вебстера, мощность всех электростанций на Земле достигнет в 2000 г. 5500 тыс. — 7500 тыс. Мгвт, а мощность атомных электростанций — 3000 тыс. — 4000 тыс. Мгвт, т. е. около половины или несколько больше половины мощности всех электростанций [41].
К этому следует прибавить, что 50 % мощности означает больше чем 50 % выработки электроэнергии, так как коэффициент нагрузки на атомных станциях превышает коэффициент нагрузки на тепловых станциях[42].
В США перелом в прогнозах выразился, в частности, в пересмотре доклада, представленного в 1962 г. Комиссией по атомной энергии президенту США. Составленное этой комиссией в 1967 г. дополнение к докладу[43] констатирует, что темпы роста атомных станций превысили предположения 1962 г. и, что еще важнее, данные о строящихся и проектируемых станциях дают основание пересмотреть долгосрочные прогнозы. Отсюда вытекала необходимость уже в 1968 г. увеличить мощность отраслей промышленности, обслуживающих строительство атомных станций.
В дополнении 1967 г. Комиссия по атомной энергии предполагает, что потребление энергии с 1965 по 1980 г. увеличится на 50 %, а к 2000 г. — на 250 %. Потребление электроэнергии сейчас составляет 20 %, к 1980 г. оно возрастет до 30 %, а к 2000 г. — до 50 %. Процент участия атомных станций в выработке электроэнергии был меньше одного в 1965 г., в 1980 г. он будет равен 23–30, а в 2000 г. — 50.
Прибавим к этим данным некоторые цифры, называвшиеся на Мировой энергетической конференции в 1968 г. Для всего энергетического баланса выработка энергии за счет сжигания угля составляет 32 % от всей энергии в 1970 г., 22 % в 1980 г. и 10–15 % в 2000 г. Природный газ и нефть соответственно будут давать 59, 66 и 58 %, гидроэнергия — 7, 5 и 2 %. Атомная энергия—2 % в 1970 г., 7 % в 1980 г. и около 25 % в 2000 г.[44]
Для темпов роста производительности труда имеет первостепенное значение доля атомной энергии в производстве электроэнергии. Во всей выработке энергии атомная энергия составит 25 %. Но эта доля в энергетическом балансе принадлежит атомным электростанциям. Удельный вес электричества как энергоносителя составит в 2000 г. более 50 % и половина этой доли — 50 % всей электроэнергии — будет, как уже говорилось, производиться на атомных станциях[45]. В форме электричества энергия будет обладать в последней трети столетия первостепенным реконструирующим, динамическим эффектом. Это связано с характером фундаментальных научно-технических тенденций.
Превращение атомной энергии в основную компоненту электроэнергетического баланса позволит перейти в промышленности и на транспорте, а также в земледелии и в добыче полезных ископаемых к методам, требующим больших, чем сейчас, удельных затрат электроэнергии. Такой переход вытекает из некоторых основных тенденций, о которых шла речь в этой книге. Решение продовольственной проблемы связано, как уже говорилось, с большими энергетическими затратами на производство удобрений, на орошение и водоснабжение. Относительное истощение сырьевых ресурсов означает увеличение удельных затрат энергии на добычу сырья. Во многих случаях это будет эффективнее, чем поиски энергетически более доступных месторождений, но требующие зато очень дорогой информации «знаю где». Электроника, превращаясь в основной рычаг реконструкции технологии, приведет к росту потребности в энергии в большом числе, отраслей. Таков же эффект применения полимеров и химии в целом, обещающих весьма радикальную революцию в использовании сырьевых ресурсов в технологии и в решении продовольственной проблемы. В последней трети нашего века темпы роста мощности электростанций и соответственно выработки электроэнергии будут, как ожидают, увеличиваться очень быстро и, что особенно важно, с заметным ускорением: мощность вырастет с 765 млн. квт в 1970 г. до 11 000 млн. квт в 2000 г. (из них 500 млн. — на атомных станциях). Особенно внушительное ускорение будет характерно для десятилетия 1990–2000 гг. Ввод новых мощностей более чем удвоит мощность электростанций (прирост — 6000 млн. квт — больше, чем вся мощность в 1990 г.), из них атомные станции дадут прирост 4000 млн. квт[46]. Таким образом, составив 50 % в общей мощности электростанций, атомные станции станут уже в 1990–2000 гг. не только преимущественной, но и преобладающей компонентой развития электроэнергетики. Теперь мы видим, что 2000 год как календарная дата достаточно близок к «2000 г.» как условной дате завершения основной научно-технической тенденции нового периода — периода технического воплощения неклассической науки.
Доклады на следующей, 8-й, Энергетической конференции (в Бухаресте в 1971 г.) позволяют видеть, что прогнозы 1968 г. в основном соответствовали реальным тенденциям[47].
В докладе Нафикса (председателя Федеральной энергетической комиссии США) «The Potential impact of environmental provisions atom elecfric utility systems» общая мощность намечена в объеме 668 млн. квт в 1980 г. и 1260 млн. квт в 1990 г., а мощность атомных станций составит 147 млн. квт в 1980 г. и 500 млн. квт в 1990 г.
В докладе Лякоста на той же конференции средний прирост мощности атомных станций на предстоящие 30 лет намечается на 7 % каждые 10 лет, и при выработке электроэнергии 10 триллионов квтч в 1980 г., 20 триллионов квтч в 1990 г. и 32 триллиона в 2000 г., доля атомных станций, равная 23 % в 1970 г., составит 30 % в 1980 г., 37 % в 1990 г. и 50 % в 2000 г.[48]
Физико-технический прогноз — возможность строительства реакторов-размножителей — позволяет правильно оценить тот экономический прогноз, который напрашивается при анализе проектировок 1967 г. Указанный прогноз — превращение атомной энергетики к началу XXI в. в преобладающую компоненту баланса электроэнергии. Из перспективы перехода к реакторам-размножителям следует, что подобное превращение является ступенью к еще более решительному преобладанию атомной энергетики. Можно представить себе, что реакторы-размножители будут обеспечивать нарастающее преобладание атомной энергетики, пока применение термоядерных реакций не снимет полностью проблему ограниченности и истощения энергетических ресурсов.
Перейдем к этой, более высокой ступени атомной энергетики. Она еще не может служить основой для прогнозов с такой степенью определенности, которая характерна для атомной энергетики, использующей деление тяжелых ядер. Мы и здесь встречаемся с соотношением: чем радикальнее прогнозируемая трансформация техники и экономики, тем неопределенней сам прогноз в смысле конкретных путей и сроков. Термоядерная энергетика обещает более глубокую трансформацию энергетики и более мощное «резонансное воздействие» на классическую энергетику, на характер труда и технологию, чем деление тяжелых ядер. Речь здесь идет о новой принципиальной физической схеме, которая гораздо больше отличается от всех путей использования тяжелых элементов, чем эти пути отличаются один от другого. Термоядерная энергетика, использующая примерно в десять раз большую долю внутренней энергии частиц, чем атомная энергетика, о которой до сих пор шла речь, основана не на делении тяжелых ядер урана и плутония, а на синтезе очень легких ядер. Уже говорилось, что в начале периодической таблицы Менделеева дефект массы (то, что было сопоставлено с компактностью упаковки ядерных частиц) быстро растет. Атомное ядро водорода, состоящее из одной частицы — протона, разумеется, не имеет дефекта массы, но уже более тяжелые ядра, содержащие две, три и т. д. частицы, обладают дефектом массы. Поэтому синтез легких ядер, образующий несколько более тяжелые ядра, освобождает энергию. Именно подобная реакция поддерживает энергию звезд. Звезды излучают энергию в пространство, но эта потеря энергии компенсируется синтезом легких ядер из водорода.
Наибольший интерес представляет следующая конкретная реакция синтеза. Перед нами — ядра дейтерия, уже известного нам изотопа водорода, т. е. ядра, каждое из которых включает кроме протона еще нейтрон и, таким образом, состоит из двух ядерных частиц. Существует изотоп водорода с тремя ядерными частицами в каждом ядре — протоном и двумя нейтронами. Он называется тритием. Дефект массы на одну частицу, т. е. удельный дефект массы, у трития несколько больше, чем у дейтерия. Если ядро дейтерия (один протон и один нейтрон) сталкивается с другим ядром дейтерия (еще один протон и еще один нейтрон), то могут образоваться одно ядро трития (протон и два нейтрона) и одно ядро обычного водорода (протон). Может быть и другой результат: слияние двух ядер дейтерия даст ядро изотопа гелия с тремя частицами — двумя протонами и нейтроном — и один свободный нейтрон.
Но, чтобы ядра слились, они должны приблизиться одно к другому на расстояние порядка их линейных размеров. Между тем ядра (в описываемом случае ядра дейтерия) имеют одинаковые электрические заряды и отталкивают друг друга. Такое отталкивание будет преодолено, если ядра обладают достаточно большой кинетической энергией, соответствующей температуре порядка ста миллионов градусов. Поэтому-то реакции синтеза легких ядер и называются термоядерными. При взрыве водородной бомбы иницирующий взрыв плутония или урана-235 создает температуру, необходимую, чтобы началась термоядерная реакция. Наиболее радикальная энергетическая революция, которую мы можем себе представить, исходя из уже известных нам физических принципов, состоит в использовании управляемой термоядерной реакции.
Синтез ядер гелия из ядер дейтерия становится интенсивным при температуре в несколько миллионов градусов, а чтобы этот синтез давал практически существенные количества энергии, требуются температуры в несколько сотен миллионов градусов. При таких температурах любое вещество становится плазмой, т. е. смесью атомов, потерявших свои электронные оболочки и оторвавшихся от атомов электронов. Когда температура достигает нескольких тысяч градусов, уже начинается отрыв электронов с внешних атомных оболочек. Эти электроны уравновешивают в нейтральном атоме положительный заряд ядра. Когда они отрываются, атом становится ионом, ионизируется. По мере дальнейшего повышения температуры доля ионов и электронов все возрастает, а доля нейтральных атомов уменьшается. При температуре в 20–30 тыс. градусов в плазме уже почти не остается нейтральных атомов. После этого дальнейшее повышение температуры срывает с атомов все более глубокие и тесно связанные с ядром электронные оболочки. Атомы тяжелых элементов, включающие десятки и даже сотню электронов, полностью ионизируются, когда температура достигает миллионов и десятков миллионов градусов.
Термоядерные реакции происходят в плазме. Например, в звездах, которые представляют собой плазменные образования. Но, когда речь идет о лабораторных или промышленных установках, плазма, по-видимому, должна быть заключена в сосуд. Здесь-то и возникает кардинальное затруднение. В свое время в средневековой Европе велся схоластический спор о неком всерастворяющем веществе. Где хранить это вещество? Ведь оно растворит любой сосуд. Несколько аналогичный, хотя вовсе не схоластический, вопрос возникает, когда речь идет о плазме. Любой содержащий плазму сосуд испарится и, более того, сам превратится в смесь ионизированных атомов и электронов. Путь к преодолению такого затруднения состоит в следующем. Если силовые линии магнитного поля окружают плазму со всех сторон, она, находясь в вакууме, не будет распространяться, не приблизится к стенкам сосуда и сосредоточится в ограниченном пространстве, окруженная пустотой. При прохождении тока через плазму, содержащуюся в вакуумной трубке, магнитное поле тока удерживает плазму, не дает ей коснуться стенок трубки, и в трубке образуется тонкий плазменный шнур. Можно создать термоизоляцию плазмы с помощью внешних магнитных полей, не связанных с током, проходящим через плазму. Беда в том, что плазменный шнур, о котором идет речь, неустойчив, он деформируется и в течение миллионных долей секунды меняет свою форму, касаясь стенок трубки. Неустойчивым оказывается и плазменный сгусток в ловушке, созданной внешними магнитными полями.
Заставить плазму, сконцентрированную и сжатую магнитными полями, сохраниться в таком состоянии хотя бы доли секунды — в этом и состоит основная задача на пути к термоядерной энергетике. Пока удалось удержать лишь очень разреженную плазму с температурой в десятки миллионов градусов в магнитной ловушке в течение сотой доли секунды. Подобный результат имеет принципиальное значение. Он делает весьма вероятной реализацию схемы термоядерных реакций в течение ближайших десятилетий. Если нельзя проектировать на конец XX столетия преобразование энергетического баланса на основе термоядерной энергетики, то можно высказать подобный прогноз для первой половины XXI в. Такой прогноз не влияет на выбор путей технической политики в наши дни, но он влияет на выбор путей научного эксперимента. На этом следует остановиться.
Результат эксперимента в общем случае не известен исследователю. Если бы он был известен с достоверностью (можно сказать: с вероятностью, равной единице), то не было бы нужды производить эксперимент. В этом смысле был прав А. Байков, когда на вопрос об ожидаемых результатах эксперимента ответил: «В науке имеют ценность только неожиданные результаты». С другой стороны, если некоторый результат заведомо не может быть получен, т. е. вероятность его равна нулю, эксперимент также теряет смысл: такая, равная нулю вероятность эквивалентна достоверному отрицательному ответу.
Направление сил и средств в экспериментальной работе определяется вероятностью некоторого результата и вероятным эффектом последнего. Но не только этим. Существует независимое от результата «резонансное воздействие» самого эксперимента, каким бы ни был его результат. В зависимости от оригинальности методов исследования, от эйнштейновского «внутреннего совершенства», от проверяемых в экспериментах исходных концепций, от общности подлежащей решению проблемы, эксперимент может оказать более или менее существенное воздействие на смежные и более отдаленные области исследования и практики. Такое воздействие можно иллюстрировать на примере классической энергетики и ее эволюции в предстоящие десятилетия.
Нельзя думать, что воздействие атомной энергетики па классическую сводится к вытеснению последней. Наряду с таким вытеснением (отчасти в противовес вытеснению) происходит другой, более сложный процесс. Резонансный эффект атомной энергетики приводит к большой интенсивности собственных, имманентных тенденций в других областях. В данном случае речь идет о том, что атомная энергетика увеличивает «собственные колебания», собственные тенденции классической энергетики.
Вероятно, поиски новых классических циклов со значительно более высокими коэффициентами полезного действия стимулируются перспективой снижения стоимости киловатт-часа на атомных станциях. Но не в этом состоит основное воздействие атомной энергетики на научно-техническую и экономическую мысль в классической энергетике. Атомная энергетика не только требует от классической энергетики повышения полезного действия установок (требует под угрозой вытеснения), но и дает классической энергетике некоторые физические и технические схемы. Они высказываются в форме прогнозов; физические и технические схемы еще не получили в некоторых случаях практического воплощения, но уже оказывают ускоряющее воздействие на классическую энергетику. В самом деле, очень важная для классической энергетики линия развития — непосредственное получение энергии электрического тока за счет тепловой энергии газа — использует плазму, которая (правда, при иных температурах) является ареной термоядерных реакций.
Прямое преобразование тепловой энергии газа в энергию электрического тока основано на следующей схеме.
Исходная позиция — газ, нагретый до сравнительно высокой температуры, ионизированный, состоящий в некоторой (возможно большей) мере из атомов, потерявших внешние электроны, и из этих ставших свободными электронов. Иначе говоря, — это плазма. Но не высокотемпературная плазма, подобная веществу звезд, а низкотемпературная, ее температура измеряется не миллионами, а только тысячами градусов. При такой температуре ионизация газа и его электропроводность невелики. Поэтому в газ вводят пары некоторых металлов, атомы которых легко теряют внешние электроны. Таким образом, получается в большей степени ионизированная и хорошо проводящая электричество плазменная струя. Она выходит через сопло в вакуум. Далее поток проходит через магнитное поле, положительно и отрицательно заряженные компоненты плазмы отклоняются в противоположные стороны и в плазме возникает электрический ток.
Ионизированный газ заменяет обмотку ротора в обычном генераторе, в которой при вращении ротора индуцируется электрический ток. Этот ток замыкается через электроды, соединенные с внешней нагрузкой. Электроды соответствуют щеткам, снимающим ток с обмотки ротора в обычном генераторе.
Такая установка — магнитогидродинамический генератор — может работать за счет классических источников тепла, но может также использовать энергию атомного реактора. Смесь газов (например, гелий с добавкой легко ионизируемых паров цезия) служит теплоносителем, отводящим тепловую энергию реактора, а частичное превращение этой энергии в кинетическую энергию горячей струи и затем в энергию электрического тока в магнито-гидродинамическом генераторе делает реактор атомной электростанцией.
Подобное соединение реактора с магнитогидродинамическим генератором требует, чтобы реактор работал при высоких температурах: газ с недостаточно высокой температурой не будет обеспечивать высокий коэффициент полезного действия в магнитогидродинамическом генераторе. Таким образом, мы видим не только воздействие атомной энергетики на выбор путей в классической энергетике, но и обратное воздействие. Атомная энергетика дает классической энергетике экономические стимулы. Плата за вход в атомный век — снижение удельных расходов на киловатт-час, причем нормативами становятся удельные расходы на атомных станциях. Далее атомная энергетика передает классической энергетике некоторые существенные результаты исследований плазмы с соответствующим переходом от высокотемпературной плазмы к низкотемпературной (разумеется, это не относится к основным проблемам: задача магнитной ловушки и стабильности сжатой плазмы отсутствует в случае низкотемпературной плазмы).
В свою очередь классическая энергетика обещает атомным станциям более экономичную «классическую компоненту», т. е. схему использования тепла ядерного реактора, его превращения в энергию электрического тока.

« »

Comments are closed.