НАУКА в 2000 ГОДУ

admin Рубрика: Оптимизм
Комментарии к записи НАУКА в 2000 ГОДУ отключены
.

Почему 2000-й?
Можно ли вывести эту дату — 2000 год — из каких-то определений современной науки, из характера ее тенденций?
Прежде чем ответить на подобный вопрос, следует отметить существование обратной связи: само определение современных тенденций требует некоторого прогноза, картины развития науки в течение предстоящих десятилетий.


Здесь может оказаться уместной следующая аналогия. Представим себе физический эксперимент, при котором возникают новые элементарные частицы. Реакция, в результате которой появятся частицы, занимает очень небольшое время, скажем, 10-22 сек. Но чтобы определить, какие именно частицы появились, каковы их массы, заряды, длительность жизни, нужно представить себе, каково эвентуальное поведение каждой из частиц, как она будет двигаться, как ее путь будет искривляться в заданном магнитном или электрическом поле, какова будет длина ее трека до распада, заканчивающего существование частицы. Только такие представления об эвентуальной дальнейшей судьбе частицы придают физический смысл вопросу о ее принадлежности к тому или иному типу, о ее заряде, массе, времени жизни.
Характеристика современного научного прогресса напоминает определение эвентуальной судьбы частицы и определение ее типа. Сейчас очень трудно определить характер наметившихся в науке тенденций. Еще труднее определить технический эффект этих тенденций — те результаты, которые они дадут при своем практическом воплощении. Совсем трудно определить экономический и социальный эффект современных научных тенденций и их реализации. Но без таких прогнозов нельзя даже сказать, в чем состоят эти современные тенденции. Мы можем назвать частицу, определить ее тип, если мы видим ее эвентуальную судьбу, ее трек. Аналогичным образом мы можем определить тенденции научно-технического прогресса, назвать эти тенденции, выяснить их смысл только с помощью научных гипотез, научно-технических прогнозов и экономических проектировок.
Исходная и основная цель современного экономического, технического и научного прогноза — определение народнохозяйственной ценности различных возможных сейчас вариантов при выборе решения. Таким образом, речь по существу идет не о 2000-м, а о нынешнем годе. Это нужно подчеркнуть самым энергичным образом. Следующий пример разъяснит подобную актуальность прогноза. Представим себе, что при проектировке нового завода, шахты, электростанции, железной дороги, порта и т. д. необходимо определить срок моральной амортизации станка, агрегата или даже всего предприятия. В условиях научно-технической революции перспектива моральной амортизации может стать более существенной, чем перспектива физического изнашивания машины и даже чем перспектива истощения месторождения при проектировании шахты. Как ни трудно определить, когда появится машина или технологический процесс, который сделает неконкурентоспособными проектируемую машину или проектируемый процесс, как ни гадательны подобные расчеты, они в условиях научно-технической революции абсолютно необходимы. И в условиях научно-технической революции они связаны с еще более гадательными, чем технические, научными прогнозами, предвидением радикальных изменений, т. е. изменений не только конструкций и технологии, но и тех идеальных физических циклов, которые в той или иной мере воплощены в применяемых конструкциях и технологических методах.
Но этого мало. Сейчас ценность научного принципа, конструкции, технологического процесса измеряется не столько его предвидимой или уже установленной экономичностью, его техническим уровнем, сколько его воздействием на темп научного, технического и экономического прогресса. Что дает открытие, изобретение, новая схема, новая конструкция, новая технология для скорости и для ускорения прогресса? Этот вопрос сейчас не менее важен, а иногда и более важен, чем вопрос, что они дают для уровня науки или экономики. Наша эпоха — это эпоха дифференциальных показателей, дифференциальных критериев. Об этом речь будет идти подробнее в третьей части книги. Сейчас подчеркнем только необходимость прогнозов для определения дифференциальных показателей.
Чтобы определить темп процесса, скорость, ускорение, вообще производную по времени от изменяющейся величины х, нужно, как известно, взять ее приращение Ах и посмотреть, каково будет отношение Ах к приращению времени At, когда это приращение стягивается в мгновение, стремится к нулю. Так определяют скорость, а повторив эту операцию, — ускорение. Прогноз — это и есть приращение, которое нам необходимо узнать, чтобы дать динамическую характеристику данного момента в науке, в технике, в экономике. Это как бы касательная, которую мы проводим в данной точке к кривой; она указывает направление кривой.
Кривая, вообще говоря, не совпадает с касательной, она остается кривой. Но без касательной нельзя определить локальное направление кривой.
В весьма значительной мере и в своих весьма важных функциях прогноз — это касательная; он определяет направление развития, состояние движения, динамику настоящего момента, динамическую ценность тех вариантов решения, которые нужно сейчас выбрать. Вариантов начальных условий, от которых зависит последующее развитие науки, техники, экономики.
Но почему мы берем в качестве At — прироста времени — несколько десятилетий, почему мы выбираем для прогнозов тридцатилетний срок, почему мы хотим узнать, какова будет судьба науки, техники и экономики в течение ближайших тридцати, примерно, лет? Откуда взялась эта дата — 2000 год? Разве характеризующие современные тенденции продолжающие их линии не могут быть протянуты дальше — на сто лет, на двести, быть может, еще дальше? О другой стороны, разве в иных случаях не будут показательными короткие прогнозы — на три, пять, десять лет?
Каждому ясно, что 2000 год — это условная дата. Но не произвольная. Она указывает порядок величины срока, в течение которого реализуются современные тенденции научного и научно-технического прогресса. Может быть, такая реализация займет не тридцать, а двадцать или сорок лет. Но речь идет о некотором определенном порядке величины срока. Этого мало. Дата «2000 год» скрывает за собой мысль о некотором едином комплексе связанных между собой сдвигов, об их общей итоговой реализации, приуроченной к некоторому времени, одному и тому же для всех отраслей и всех путей прогресса.
В чем состоит такой комплекс?
Ответом на этот вопрос и является вторая часть книги. В вводной главе этой части следует ограничиться предварительным, весьма общим ответом. Он состоит в следующем. В течение времени, которое измеряется несколькими десятилетиями и которое мы условно отождествляем с концом нашего столетия, будет реализовано то, что обещает сейчас неклассическая физика.
Что же она обещает?
Ее обещания — это прогнозы дальнейшего развития атомной энергетики, квантовой электроники, молекулярной биологии. Прежде всего следует отметить наиболее характерную общую гносеологическую особенность современного этапа науки, вызвавшего к жизни перечисленные направления научно-технического прогресса. Такой особенностью, определяющей характер и содержание нынешних прогнозов, является связь конкретных научных и научно-технических открытий с пересмотром наиболее фундаментальных принципов науки и с реализацией тех новых физических идей, которые были сформулированы в первой половине столетия. Наше столетие началось очень радикальным пересмотром классических устоев науки и, что, может быть, еще важнее, отказом от самой презумпции неподвижного фундамента развивающихся представлений о мире. Весьма вероятно — это вытекает из конкретного анализа современных тенденций науки — столетие закончится полным производственно-техническим воплощением тех новых физических идей, возникновение которых ознаменовало начало столетия. Можно думать, что в течение нескольких десятилетий — времени, которое мы, как уже сказано, несколько условно, но с известными основаниями отождествляем с последней четвертью века, будет создано новое но своим научным основам производство, новое прикладное естествознание.
Тут необходимы пояснения. В XVII столетии возникла классическая наука. Она получила такое название потому, что основные законы природы, найденные Галилеем, Декартом и Ньютоном, а затем вереницей великих мыслителей XVIII и XIX столетий, претендовали на роль окончательных истин, которые останутся навсегда такими же незыблемыми канонами научной мысли, какими стали для художественного творчества каноны, воплотившиеся в архитектурные и скульптурные шедевры классической древности.
Классическая физика, и прежде всего законы механики, изложенные в «Математических началах натуральной философии» Ньютона, имели некоторое основание претендовать на роль вечных скрижалей науки. Начиная с Ньютона наука развивается, не отбрасывая того, что найдено и проверено опытом, она обобщает и уточняет старые законы, находит области их применимости, показывает, как эти законы модифицируются в новых областях. Но классическая наука претендовала на большее. Большинство мыслителей XVIII–XIX вв. думали, что законы механики Ньютона представляют собой незыблемый фундамент науки. Классическая наука — это не только определенные аксиомы (такие, как независимость массы тела от энергии, с которой оно движется, или непрерывность энергии — возможность сколь угодно малого ее приращения), но и уверенность в том, что это действительно аксиомы. Дело даже не в субъективной уверенности. Понятия классической науки по существу не требуют для своего понимания каких-то иных, противоречащих им допущений.
Что же такое неклассическая физика? Ее иногда определяют чисто негативным образом: она не классическая, в общем случае она отказывается от фундаментальных постулатов, из которых исходит классическая физика. В 1900 г. Планк предположил, что излучение энергии может происходить лишь определенными минимальными количествами — квантами. Через несколько лет Эйнштейн показал, что из относительности пространства, времени и движения (эти релятивистские понятия были противопоставлены ньютоновым понятиям абсолютного пространства, времени и движения) следует зависимость массы тела от скорости и, следовательно, от энергии его движения; когда скорость приближается к своему пределу — 300 тыс. км в секунду, масса тела стремится к бесконечности. Эйнштейн предположил далее, что и масса покоящегося тела m зависит от его внутренней энергии Е; если измерить энергию и массу обычными единицами, то энергия равна массе, умноженной на квадрат скорости света с. Таким образом, Е = mс2.
В 20-е годы появилась еще более парадоксальная неклассическая теория — квантовая механика. Бор и Гейзенберг показали, что движущаяся частица не обладает, вообще говоря, определенным положением в пространстве и определенной скоростью в данный момент. Эти новые соотношения, свойственные процессам, очень далеким от повседневного опыта, произвели неожиданно сильное впечатление на широкие круги. Казалось бы, тело, которое движется со скоростью, сопоставимой со скоростью света (о нем идет речь в теории относительности), не должно вызывать какие-либо эмоции у человека, не занимающегося теоретической физикой. Столь же далека от него судьба электрона, проходящего сквозь очень узкое отверстие, близкое по размерам к размерам электрона. Если при таком чисто мысленном, практически неосуществимом эксперименте прохождение сквозь отверстие меняет скорость электрона и делает ее неопределенной — это, по-видимому, не должно было произвести сильное впечатление на широкие круги. Между тем впечатление было колоссальным. И квантовая механика и теория относительности вызвали не только широкий интерес, но и серьезное изменение стиля мышления о природе. Вероятно, несколько сходный переворот в умах был следствием исчезновения абсолютного «верха» и «низа» в древности, когда утвердилось представление о шарообразной форме Земли. Подобное же смятение в умах произвела астрономия XVI–XVII вв., покончившая с абсолютно неподвижным центром Вселенной. Изменилось не только представление о фундаментальных законах природы, но и представление о самой науке. Теория относительности и позже квантовая механика не только заменили старые фундаментальные законы новыми. Эти новые законы уже не претендовали на окончательное решение основных проблем бытия.
Гельмгольц в XIX в. видел высшую и конечную цель науки в сведении всей картины мира к центральным силам, полностью подчиненным механике Ньютона. Современный физик не собирается поставить на место этой цели какую-то другую, но также окончательную цель. Подобные викторианские иллюзии потеряны навсегда. Неклассическая физика — это здание, которое не только растет вверх, но и углубляется в поисках фундамента, все более глубокого, но никогда не оказывающегося последним. Человеческий разум в этом смысле не только увидел новую Вселенную, но увидел в новом аспекте самого себя.
Эффект неклассической физики не был только негативным. Человечество интуитивно почувствовало, что оно вступает в эпоху более высокого динамизма, что наука несет с собой не только неясные еще, но несомненно глубокие изменения в жизни людей, но что сама эта жизнь станет непрерывным изменением, что изменятся не только научные представления, но и потенции науки, ее воздействие на жизнь станет непрерывно изменять материальные и духовные силы человечества.
Те, кто помнит первоначальное воздействие теории относительности и квантовой механики на общественную психологию, могут засвидетельствовать оптимистический характер их эффекта. В 20-е годы происходила радикальная переоценка ценностей. Стабильность, повторяемость, неизменность потеряли свой викторианский, оптимистический ореол. Оптимизм все больше стал связанным с преобразованиями. Разумеется, дискредитация покоя и апофеоз движения — очень приблизительная характеристика, требующая оговорок, связанная с противоречащими ей констатациями. Разумеется, также корни указанной переоценки ценностей гораздо шире, чем воздействие неклассической науки; последнее, может быть, даже и не входило в число этих корней — просто психологический эффект науки совпал с господствующими переменами в общественной психологии. Это было одной из причин характерного для 20-х годов напряженного интереса к новой науке.
В середине века интуитивное прозрение стало отчетливым прогнозом. Теперь мы можем в какой-то мере определить, в чем состоит эффект неклассической физики, эффект ее основной черты — незавершенности, незамкнутости новых представлений о мире, неизбежного пересмотра фундаментальных принципов науки. Посмотрим же, каким рисуется сейчас эффект неклассической физики.
Классическая физика также сделала динамичными, подвижными, изменяющимися и научные представления, и воздействие науки на материальные и духовные силы человечества. Но это был динамизм другого, менее высокого ранга. Менялись частные научные представления, но фундаментальные принципы оставались неизменными. Изменение частных научных представлений вызвало сначала спорадическое, а в конце классического периода, в начале XX в., непрерывное изменение технического уровня производства. Начиная с промышленного переворота XVIII в. производство становится прикладным естествознанием. Технический прогресс спорадически или непрерывно исходит из схем классической науки, он берет эти схемы в качестве идеальных циклов, к которым должна приблизиться производственная техника. Вся история классической теплотехники — это история последовательного приближения к идеальному циклу Карно, к идеальной физической схеме перехода тепла от нагретого тела к более холодному; такой переход позволяет превратить тепло в механическую работу. Сами идеальные физические схемы не оставались неподвижными, они дополнялись новыми. Наука узнавала о новых законах сохранения, об энтропии, о строении молекул, об эволюции неорганической и органической природы; число схем, служивших целевыми канонами для практики, все возрастало. Если говорить об энергетике, то главным целевым каноном XVIII в. было сохранение механической энергии при преобразовании уже имеющегося потенциала (например, вода, давящая на ковши наливного колеса) или имеющейся кинетической энергии (поток, толкающий лопатки подливного колеса) в механическое вращение машин, родоначальниками которых были прядильные и ткацкие станки, возвестившие промышленную революцию. В XIX в. (вернее, в период, охватывающий конец XVIII в. и почти весь XIX в.) таким целевым каноном энергетики стало сохранение энергии при преобразовании тепла в механическую работу. Приближение к целевому канону выражалось в повышении коэффициента полезного действия тепловых установок. Начиная с конца XIX в. наука, узнав о превращении механической работы в электричество и о превращении электричества в механическую работу (это связано с выводами из основных уравнений классической электродинамики, из уравнений Максвелла), ставит перед техническим прогрессом новый целевой канон, и энергетика стремится воплотить в жизнь схему: движение проводника в магнитном поле вызывает электрический ток, а последний на значительном расстоянии заставляет вращаться проводник в магнитном поле. Воплощение этой схемы в виде единой системы централизованного электроснабжения — основная цель электрификации.
Через несколько строк мы остановимся подробнее на электрификации как воплощении классической электродинамики. До этого — одно замечание о воплощении всей классической физики во всей эволюции энергетики вплоть до середины нашего столетия.
Классическая наука оперирует дискретными частями вещества — макроскопическими телами, молекулами и атомами. Энергия всех этих движущих тел обязана своим существованием, если говорить о Земле, солнечной радиации. Солнце создает все классические источники используемой в производстве энергии. Солнечные лучи поднимают вверх молекулы воды, они же создают перепады давления воздуха и ветер, они же перестраивают молекулы органического вещества при поглощении света хлорофиллом, т. е. концентрируют запасы энергии в виде топлива. Таким образом, классическая энергетика не выходит за пределы процессов, происходящих в неизменной Солнечной системе. Забегая вперед, заметим, что новая энергетика — воплощение неклассической науки — опирается на процессы, которые объясняют возникновение атомных ядер, на процессы, происходящие при возникновении и гибели миров.
Разумеется, и классическая энергетика опирается на такие процессы, которые получили сейчас неклассическое объяснение; таковы процессы, вызывающие излучение Солнца, накопление его энергии в хлорофилле и даже возникновение и распространение тока в проводниках. Но слово «опирается» имеет здесь другой смысл: классическая энергетика могла развиваться без обнаружения неклассической природы этих процессов. Напротив, новая энергетика в существенной мере связана с подобным обнаружением.
Вернемся к электрификации. Она состояла в том, что классические источники энергии используются в объединенных системах, состоящих из генерирующих точек и потребителей электроэнергии. Объединяют их высоковольтные передачи. Но это только первое звено электрификации. Оно вызвало резонанс в технологии, в сырьевой базе производства, в характере труда, в культуре и в науке.
Технологический резонанс объединения энергетики состоял в широком промышленном применении электролиза. Электроемкие технологические процессы, технологические методы, требующие значительного удельного расхода электроэнергии, становились экономичными, по мере того как электрификация осваивала средоточия гидроэнергии и дешевое местное топливо. Стало возможным несопоставимое с прошлым по масштабу производство искусственных азотных удобрений, это сразу же изменило продуктивность сельского хозяйства. Далее, электрификация открыла дорогу электроемким методам, с помощью которых производятся легкие металлы и специальные стали. Изменился металлический костяк производства. Соответственно изменилась сырьевая база. Теперь стали необходимы редкие металлы и вообще элементы, которые были известны химии, но совершенно не известны технологии. Десятки элементов периодической системы Менделеева стали новым промышленным сырьем.
Электрификация изменила характер труда. Гибкость электрического привода позволила заменить рабочего машиной в более сложных операциях. Электрические двигатели, то очень мощные, то миниатюрные, приводили в движение многочисленные механизмы, обрабатывающие детали, передвигающие их, передающие от одного автоматического станка к другому. Появились сервомоторы — двигатели, которые не обрабатывают объект труда, а управляют другими двигателями меняют их режим, меняют наклон резца, направление автоматического транспортера и т. д. Для электрифицированного производства характерен пульт управления автоматическими линиями со стрелками, указывающими на скорости, напряжения, температуры, поступление сырья, выход продукции, и с кнопками и рычагами, позволяющими управлять сложным агрегатом или системой агрегатов.
Общий экономический результат электрификации состоял в следующем.
Проникновение электричества в технологию, переход к новым видам сырья и автоматизация производства стали теперь практически непрерывными процессами. Не проходило недели, чтобы в той или иной лаборатории, в том или ином конструкторском бюро, в том или ином цехе не появлялись новая деталь конструкции, новая компоновка, новая рецептура, новые операции, новые параметры. Соответственно технический прогресс приобрел непрерывный характер, а вместе с ним и производительность общественного труда стала расти практически непрерывно.
Как известно, непрерывные изменения величин можно (оставив в стороне некоторые математические тонкости) представить в виде производных по времени. Первая производная по времени от положения точки — это ее скорость, вторая производная — ускорение. Можно сформулировать экономический результат электрификации, сказав: при электрификации первая производная по времени от производительности труда становится положительной, она больше нуля, производительность труда растет непрерывно, она обладает некоторой скоростью.
В 1920 г. был составлен план электрификации Советской России. Он включал первоочередную программу строительства электростанций и более отдаленную программу объединения в единое кольцо станций европейской части страны при увеличении их мощности. План указывал направления и масштабы электрификации промышленности, использования электричества для механизации производства и для новых технологических процессов: он намечал электрификацию транспорта и земледелия и перспективы развития основных отраслей производства при его реконструкции на базе электричества. Все это в целом образовало комплекс связанных между собой и приуроченных к одному и тому же примерно сроку сдвигов в производстве — создание высоковольтной сети, объединяющей большие станции, механизацию производства, изменение характера труда, развитие электроемких отраслей, изменение сырьевых ресурсов.
Теперь нам легче будет понять, в чем состоит эффект неклассической физики.
Прежде всего это новая энергетическая база производства. В данном случае слово новая означает нечто весьма радикальное. Речь идет о воплощении весьма общего физического принципа. Для технической революции, вызванной механическими станками XVIII в., наиболее общим физическим принципом был ньютонов закон сил — пропорциональность ускорения тела и действующей на него силы с постоянным коэффициентом пропорциональности, равным массе тела. Для революции, вызванной тепловыми машинами XVIII–XIX вв., таким наиболее общим принципом были начала термодинамики. Для революции, вызванной электричеством, — законы электродинамики, уравнения Максвелла, связывающие магнитное поле с электрическим и воплощенные в трансформаторе, генераторе и электродвигателе. Для атомной энергетики таким наиболее общим принципом, определяющим идеалы и направления исследований и последующего применения их результатов, является релятивистское соотношение между массой ядра и энергией связи ядерных частиц. Разумеется, каждая из этих формул не противостоит другим: когда в современном атомном реакторе (использующем небольшую, но уже существенную долю энергии, вычисленной с помощью формулы Эйнштейна) выделяется тепло, дальнейший расчет использования этого тепла опирается на классическую термодинамику и классическую электродинамику, а расчет механических процессов в атомном реакторе — на классическую механику. Но мы теперь судим об эволюции энергетики, измеряя не динамику последовательного использования теплотворной способности сгорающего (в прямом классическом смысле, т. е. соединяющегося с кислородом) топлива, и уже не исходим из энергии, которую Солнце вложило в молекулу органического вещества. Мы измеряем теперь использование внутренней энергии ядра, той энергии, которая была в него вложена, когда ядро было создано в результате процессов, происходивших в очень малых пространственно-временных областях, но связанных с космической эволюцией звезд, а может быть, и галактик.
Завершением некоторого определенного периода научно-технического прогресса, связанного с атомной энергетикой, вовсе не будет полное использование релятивистской энергии Е = mс2, так же как завершение революции, произведенной паром, не означало полного использования теплотворной способности угля. Революция, произведенная паром, была завершена, когда уголь стал основной компонентой энергетического баланса, когда производство в существенной мере мигрировало от рек и построенных на их берегах водяных колес к угольным бассейнам, когда появились паровой транспорт и классические индустриальные центры. Аналогичным образом революция, произведенная электричеством, не требовала для своего завершения полного использования классических ресурсов энергии и ее завершение (разумеется, относительное, сохранившее перспективу дальнейшего прогресса станций, сетей, промышленной электроаппаратуры и методов технологического применения электричества) означало создание больших межрайонных колец, широкую автоматизацию, электрификацию технологии и — как результат — непрерывность технического прогресса, позволяющую говорить о ненулевой производной по времени от уровня техники и уровня производительности труда.
Для революции, вызванной энергией атомного ядра (если провести дальше аналогию с электрификацией как воплощением классической физики), можно считать некоторый комплекс связанных между собой сдвигов в технологии, характере труда, характере сырьевой базы, культуре и науке содержанием особого периода и назвать завершением этого процесса превращение атомных станций в преобладающий источник производства электричества, автоматизацию на основе электронных вычислительных и управляющих машин и освобождение производства от угрозы истощения ресурсов.
Все эти результаты атомной энергетики (их также можно было бы назвать резонансами: атомная энергетика лишь усиливает внутренние тенденции электроники и кибернетики) приводят к непрерывному ускорению технического прогресса. Развитие атомной энергетики — это уже не ряд конструкций, все более приближающихся к идеальной физической схеме. Это зачастую изменение самой схемы. Позже мы вернемся к указанной особенности атомной энергетики. Аналогичным образом «резонансные» процессы внедрения электроники в технологию и применения кибернетики часто меняют во всем производстве принципиальные схемы, а не только инженерное оформление одной и той же схемы. Забегая вперед и не приводя пока примеров и доказательств, сформулируем основную экономическую характеристику атомного века: уровень техники и уровень производительности труда не только растет, но растет с непрерывным ускорением, возрастают скорость технического прогресса и скорость повышения производительности труда. Уже не только первая производная по времени от производительности труда становится положительной, но и вторая производная тоже больше нуля.
Это и есть основной экономический результат превращения атомной энергетики в основную компоненту энергетического баланса, превращения электроники в основное средство технологии, превращения работы с помощью кибернетических механизмов в основное содержание труда.
А что потом? Можем ли мы указать сейчас контуры послеатомного века?
Этого мы сделать не можем. Но мы можем указать, причем с большой определенностью, на тот процесс, который подготавливает уже сейчас послеатомную цивилизацию. Вопросу о подобной подготовке посвящена специальная глава. Здесь подчеркнем только, что мы знаем с большой определенностью, в чем состоит подготовка послеатомной цивилизации, но вовсе не знаем, каков будет результат этой подготовки, каковы будут научные представления, из которых вырастет возможность новой, послеатомной энергетики, новой технологии, нового характера труда.
Путь, который ведет к таким новым научным представлениям, — это изучение элементарных частиц. Уже не только атомов и не только атомных ядер, но и тех частиц, которые пока не удалось и, вероятно, не удастся разделить на субчастицы. К их числу принадлежат элементарные частицы с отрицательным электрическим зарядом — электроны; далее нуклоны — частицы, из которых состоят атомные ядра: протоны с положительным электрическим зарядом и нейтроны без электрического заряда; и еще многие частицы. Беда в том, что мы с трудом можем сказать, чем же отличаются элементарные частицы от неэлементарных, и уже вовсе не можем сказать, от чего зависят массы и заряды, отличающие один тип элементарных частиц от другого.
Есть все основания думать, что решение Этих вопросов возможно только при очень радикальном отказе от привычных представлений, более радикальном, быть может, чем отказ от классических аксиом физики при создании теории относительности и квантовой механики.
Не исключено, что через десять или двадцать лет (во всяком случае речь идет о сроках такого порядка) начнется период быстрого изменения самых фундаментальных принципов науки. Тогда будут быстро меняться не только конкретные научные схемы (это происходит уже в наши дни), но и сами идеалы науки, к которым стремятся ученые, разрабатывая новые научные схемы. Тогда, быть может, станет непрерывным не только ускорение технического прогресса, но само ускорение будет непрерывно увеличиваться и станет реальной положительная третья производная по времени от уровня техники, от уровня власти человека над природой.
Но эта третья производная пока не является измеримой величиной. Это только символ возможного экономического эффекта тех фундаментальных исследований, которые расширяют наши знания об элементарных частицах. Такие исследования позволяют проникнуть в очень маленькие пространственные области (порядка радиуса атомного ядра, т. е. около 10-13 ом) и временные интервалы порядка 10-23 сек. Проникнуть в них можно с помощью очень мощных ускорителей элементарных частиц. Другой, дополнительный путь — астрофизические исследования, в частности исследования космических лучей — потоков частиц очень высокой энергии, приходящих на Землю из мирового пространства.
Это «бескорыстные» исследования. Кавычки не означают сомнения в действительно бескорыстном характере того стремления к решению чисто познавательных задач, которое ведет человека в космос и в микромир. Каковы бы ни были возможные практические результаты астрофизических исследований или сооружения очень мощных ускорителей частиц, не эти принципиально неопределимые заранее результаты служат непосредственным стимулом указанных исследований. Их сделали большими народнохозяйственными начинаниями, преследуя прежде всего познавательные цели. Люди уже знают, что отвлеченный характер познавательных задач и полная неопределенность практических результатов их решения соответствуют радикальному характеру этих заранее неопределимых результатов и в конце концов радикальному ускорению экономического прогресса. Они понимают, что теория относительности стала истоком такого радикального практического результата, как атомная энергетика, именно благодаря чрезвычайно общему, отвлеченному и чисто познавательному характеру поставленных в начале столетия вопросов о пространстве, времени, движении, эфире, массе и энергии. Сейчас перед наукой стоят еще более общие и еще более фундаментальные вопросы. Они будут решаться независимо от определенности их практических результатов. И тем не менее кавычки, в которые взяты «бескорыстные» исследования, имеют некоторый смысл: «корысть» здесь количественно неопределима, заранее не известна, но совершенно бесспорна и чрезвычайно велика.
Является ли она экономическим понятием? Можно ли говорить об экономическом эффекте фундаментальных исследований в области теории элементарных частиц?
По-видимому, пришло время обобщить понятие «экономический эффект», включить в него не только производительность общественного труда, но также скорость возрастания этого показателя, далее его ускорение и, может быть, даже скорость ускорения. Речь идет, как уже было сказано, о производных по времени от производительности труда: о первой производной (скорость возрастания), второй производной (ускорение) и третьей производной (скорость ускорения).
Учет производных по времени, в том числе третьей производной, позволяет рассматривать фундаментальные, «бескорыстные» исследования (отвечающие на вопросы о пространстве и времени, об их конечности или бесконечности, об их прерывности и непрерывности, об «элементарности» элементарных частиц, о природе их массы, заряда и т. д.) как звенья экономической деятельности человека, как нечто увеличивающее власть человека над природой, повышающее сумму потребляемых человеком материальных, интеллектуальных и эстетических ценностей.
Только самые простые исследования — контрольные измерения качества сырья и продукции, скорости станков, давления пара, напряжения и т. п. — обеспечивают данный уровень производительности труда. Конструкторские и технологические работы увеличивают производительность труда, придают ей ненулевую скорость роста. Собственно, научные исследования гарантируют ускорение, а самые фундаментальные из них обещают возрастание ускорения производительности общественного труда. Ничто не может дать такой сильный импульс темпам ускорения производительности общественного труда, а значит, и всей цивилизации в целом, как «бескорыстные» исследования — действительно бескорыстные, если иметь в виду уровень производительности труда, и связанные с очень большой объективной «корыстью», если иметь в виду возрастание ускорения этого универсального показателя цивилизации.
Существует довольно отчетливая связь между степенью общности, глубины и «бескорыстия» научных исследований и неопределенностью их экономического эффекта. Контрольные измерения, конструкторско-технологические работы, собственно научные исследования по уже проложенным принципиальным руслам и, наконец, фундаментальные исследования дают все более интенсивный и вместе с тем все более неопределенный и неожиданный эффект.
Мы можем выдвинуть в качестве достаточно точной и универсальной закономерности следующее соотношение: чем выше порядок производной, на величину которой воздействует результат исследования, тем неопределеннее экономический эффект этого результата и тем такой эффект глубже.
Соответственно экономическая теория должна включить неопределенность в качестве фундаментального понятия. Она стала такой точной наукой, что должна разделить общую судьбу точных наук и оперировать фундаментальным понятием неопределенности.
Неопределенность эффекта фундаментальных работ — это неопределенность иного типа, чем неопределенность эффекта научных исследований с предвидимыми (хотя и не однозначно) результатами и неопределенность эффекта конструкторских и технологических поисков. Она ограничивает прогноз, претендующий хотя бы на минимальную определенность. Такой прогноз не должен выходить за рамки комплекса сдвигов в энергетике, технологии, характере труда и сырьевой базе, которые гарантируют ускорение уровня производительности труда и соответствуют понятию «атомный век». Фундаментальные исследования — это своеобразное memento mori, намек на ограниченность такого комплекса во времени.
Подобное ограничение прогноза — результат характерного для неклассической науки радикального отрицания каких бы то ни было раз навсегда данных абсолютов. Неклассическая наука — в этом ее фундаментальная особенность — видит свою собственную ограниченность и, более того, включает некоторые указания на возможную модификацию своего собственного фундамента. Но они недостаточны для воплощения в новые схемы и идеальные циклы, становящиеся вехами научно-технического прогресса. Их значение для прогноза состоит в возможности и необходимости ограничить прогноз во времени. Мы ссылаемся на возможность совершенно новых, после-атомных условий технического прогресса после того комплекса связанных между собой энергетических и технологических сдвигов, которые займут несколько десятилетий и могут быть условно приурочены к 2000 г.
Предстоящие три, может быть, четыре десятилетия — это и есть атомный век, период, для которого мы можем наметить относительно определенные научно-технические перспективы и относительно определенный интегральный экономический эффект развития науки. В первой половине века появились новые интегральные принципы науки, научная мысль перешагнула то, что мы назвали общими границами, отделяющими уже не одну отрасль от другой, а одну эпоху от другой. Этот импульс, начавшийся в теоретической физике, пошел дальше, из одной отрасли в другую, скорость его распространения увеличивалась благодаря новому математическому аппарату и новым экспериментальным методам, сам импульс нарастал лавинообразно, но при этом сохранялась возможность в какой-то мере предвидеть направление научно-технического прогресса. Появились атомная энергетика, квантовая электроника, кибернетика, молекулярная биология — направления, о которых в этой, второй части книги будет сказано сравнительно подробно. Они связаны с основами неклассической физики прямо (атомная энергетика, квантовая электроника) или косвенно (молекулярная биология), и теперь в их развитии мы не встречаем фундаментальных порогов, связанных с переходом к новым интегральным основам научного мировоззрения в целом.
Отсюда некоторое постоянство, некоторая закономерность в эволюции экономических показателей как функции научно-технического прогресса. Если производительность общественного труда приобретает ненулевую первую производную по времени, т. е. незатухающую скорость, в результате собственно технических открытий, новых технологических рецептов и новых конструкций, ненулевую вторую производную — ускорение в результате собственно научных открытий, новых физических схем и идеальных циклов и ненулевую третью производную в результате изменения принципиальных оснований науки в целом, то для ближайших десятилетий — условно для конца столетия — мы можем исходить из ненулевой второй производной по времени от производительности труда, из ускорения этого показателя как из основного неравенства, характерного для прогнозируемого периода.
Все это отвечает на вопрос: «Почему 2000-й?» Но теперь перед нами появляется другой вопрос: почему именно сейчас, в начале 70-х годов, стало возможным высказать сравнительно обоснованный прогноз на 2000-й год?
Прежде всего уже в 60-е годы атомные станции стали способны конкурировать с тепловыми, угольными станциями. Позже, в главе об атомной энергетике, будут приведены сопоставления стоимости киловатт-часа на атомных и угольных станциях. Тот факт, что эти величины сблизились, создает возможность длительного, охватывающего десятилетия перехода к атомному в своей преобладающей части балансу электроэнергии. Разумеется, скорость перехода существенно зависит от того, насколько достигнутая близость этих величин сменится разностью в пользу атомных станций. Но сейчас, мы прошли точку пересечения кривых стоимости киловатт-часа. Ряд обстоятельств позволяет думать, что стоимость киловатт-часа на атомных станциях будет снижаться быстрее, чем его стоимость на тепловых станциях, позволяет предвидеть последовательное увеличение разности в пользу атомных станций. Во всяком случае сейчас прогнозы в части атомной энергетики исходят из уже доказанной возможности рентабельного перехода к новой структуре энергетического баланса. Можно даже рассчитывать на ускорение перехода, связанное с тем, что в 70-е годы физически и технически решена проблема реакторов, которые производят больше ядерного горючего, чем потребляется в реакторе.
Для 70-х годов характерно также, что новая технология, опирающаяся на электронику, подошла к основным производственным процессам. В этот же период кибернетика после очень важных для будущего успехов в области связи, обработки и хранения информации и управления подошла к собственно производственным задачам в основных отраслях производства. Эти три основные тенденции — атомная энергетика, электроника и кибернетика — сейчас, в 70-е годы, достигли своего, если можно так выразиться, экономического совершеннолетия. Они-то и представляют собой научно-техническую основу нового прогноза, воплощающего неклассическую науку. Реализация такого прогноза требует повышения того, что можно назвать интеллектуальным потенциалом науки. Он зависит от широты и общности тех фундаментальных проблем, при решении которых наука находит новые связи между дифференцировавшимися отраслями знания, переносит экспериментальные и математические приемы из одной отрасли в другую и расширяет арсенал этих приемов.
Указанные основные тенденции — атомная энергетика, электроника, кибернетика — приводят не только к расширению производства, причем к ускоренному расширению. Они приводят к очень большому и очень быстрому расширению того, что можно назвать пространственно-временными пределами прогноза. Современная наука и современная техника проникают в микромир, они создают микроскопические «ноозоны» — зоны рационального и целесообразного упорядочения микропроцессов. Но при этом процессы, начавшиеся на микронном уровне, приводят к последствиям, охватывающим всю литосферу, гидросферу и атмосферу Земли, а события, происшедшие в течение миллионных долей секунды, изменяют вековые процессы на Земле. Наше время можно было бы назвать эпохой цепных реакций.
Существенным, а вернее, фундаментальным, жизненно важным для человечества результатом расширения пространственных и временных масштабов эффекта нынешних научно-технических начинаний является воздействие этих начинаний на экологию человека, на среду, в которой он живет, на растительный и животный мир, на состав атмосферы и воды, на уровень радиации, на баланс естественных ресурсов для жизни и производства. Появляется новый критерий для оценки научно-технических проектов. Он выходит далеко за пределы критериев стоимости единицы установленной мощности или стоимости продукции и т. п., но с какой-то точки зрения он является экономическим, если понимать под экономикой, производством, трудом всю совокупность взаимодействий человека и природы. Экологический критерий может быть основой позитивной оценки: современная наука и современная техника могут привести к необходимым для человечества изменениям в условиях обитания, в геофизической обстановке, в растительном покрове Земли, в балансе ископаемых ресурсов, могут устранить разрушительные катаклизмы, сделать обитаемыми большие территории. Этот критерий может привести и к негативным оценкам содержания или масштабов научно-технических начинаний. Во всяком случае прогноз с очень широкими пространственными и временными масштабами становится условием правильной оценки проектов, а оптимистический прогноз — необходимой предпосылкой реализации научно-технических замыслов.
Но это только часть характерного для нашего времени интереса к будущему. Вероятно, ни одно поколение еще не думало так много о будущем.
Для современной общественной психологии характерно прогнозное мышление. Сейчас нельзя понять, что собой представляют материальные и духовные ценности сегодняшнего дня без понимания, куда они ведут, какие двери они открывают. Наука — именно она — привела человечество к перекрестку, на котором стоит надпись: «направо поедешь… налево поедешь…» Один путь угрожает атомной войной и разрушением цивилизации. Эта сторона надписи изложена во множестве документов, исследований и романов (типа написанного Шьютом в 1957 г. романа «На берегу» о гибели человечества в результате атомной войны 1962–1963 гг.; то, что мы перешагнули эту дату, никого не успокаивает и не должно успокаивать). Другая сторона надписи говорит о небывалом подъеме науки, культуры и благосостояния людей, об ускорении прогресса, о ликвидации болезней, подъеме интеллектуального и морального уровня. Эта, вторая часть книги — попытка изложить некоторые прогнозы, помещенные на оптимистической стороне надписи и связанные прямо или косвенно с современными релятивистскими и квантовыми теориями.

« »

Comments are closed.